Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor
نویسندگان
چکیده
In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 ) anions which act as catalysts for subsequent redox and intercalation reactions. Keywords—Metal oxide nanomaterials, Electrochemical Capacitor, Double Layer Capacitance, Pseduocapacitance.
منابع مشابه
Nano Fe 3 O 4 - Activated Carbon Composites for Aqueous Supercapacitors
In this study, a symmetric supercapacitor has been fabricated by adopting the nanostructured iron oxide (Fe3O4)-activated carbon (AC) composite as the core electrode materials. The composite electrodes were prepared via a facile mechanical mixing process and PTFE polymeric solution has been used as the electrode material binder. Structural analysis of the nanocomposite electrodes were character...
متن کاملCarbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor
We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...
متن کاملOxygen reduction reaction on Pt/C at the presence of super paramagnetic of Fe3O4 nanoparticles for PEMFCs
In this paper the role of super paramagnetic iron oxide nanoparticles (SPI) on Platinum nanoclusters on activated carbon (Pt/C) for electrocatalytic oxygen reduction reaction was considered. Four composites of Pt/C and super paramagnetic iron oxide nanoparticles were prepared with the same total composites weight and different loading of Pt/C (1.2, 0.6, 0.4 and 0.3 mg ). The composite attached ...
متن کاملGraphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance
Articles you may be interested in Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors Effect of nano-filler on the performance of multiwalled carbon nanotubes based electrochemical double layer capacitors Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor app...
متن کاملSynthesis and electrochemical performance of a polymer-derived silicon oxycarbide/boron nitride nanotube composite
Polymer-derived ceramics (PDCs) such as silicon oxycarbide (SiOC) have shown promise as electrode materials for rechargeable Li-ion batteries (LIBs) owing to the synergy between their disordered carbon phase and hybrid bonds of silicon with oxygen and carbon. This study describes the synthesis and characterization of a new type of PDC composite comprising SiOC embedded with varying wt% of boron...
متن کامل